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Although data scientists spend less time now than they did a few years ago on 

data preparation, our 2020 State of Data Science survey found that nearly half  

of their time (45%) is still spent preparing for analysis and modeling. 

Data discovery and data preparation have always been among the most  

time-intensive steps of a research project and for good reason: If there are 

unaddressed errors in data, or if the wrong version of data is used, there will be 

errors in the resulting analysis or model. In some cases these errors could 

render the analysis or model completely useless. This is why thorough data 

preparation is essential for accurate analyses and accurate models. 

Introduction
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https://www.anaconda.com/state-of-data-science-2020


Data preparation will likely always be a major step in the data 

science process. However, data scientists can speed up the 

time spent on data prep tasks with a well-documented and 

curated data catalog, a repository of data cleaning functions, 

and of course, Python tools and libraries created especially for 

more efficient data prep. 

What does data preparation include? 

Data preparation is a general term that includes multiple steps 

that might be needed to prepare data for analysis or machine 

learning and model development. Data preparation will usually 

include anonymization, data discovery and exploration, data 

cleansing, and what some refer to as ETL —  extracting, 

transforming and loading.

Let’s take a look at some tools and tips to make each of these steps more efficient.
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Data must be managed ethically and securely throughout the 

data science process. When working with data that involves 

personally identifiable information (PII) or other sensitive data, 

the first step in the data preparation process must be to 

anonymize the data. One way to do this is to replace real 

personal data with similar but fake information. An open-source 

Python tool that helps with this process is Faker. Faker’s library 

contains a comprehensive set of data generators for data needed 

in a variety of domains.

Learn more about Faker and how to install it.

Data anonymization

Scrubadub is another Python tool that can be used to efficiently 

scrub PII from free text, including names, email addresses, 

phone numbers, social security numbers, usernames, and more.  

Read more about Scrubadub and how to easily install 

this tool.

To maintain the integrity and usefulness of the data after 

anonymization, the fake data must preserve the structure and 

semantics of the original data. Consider the relationships that 

originally existed between fields. For example, how do people’s 

names and employer names relate to the structure of their email 

addresses? If this is important for the analysis or model, create a 

mapping of real domains to fake domains. Deduplication should 

also be performed after anonymization. This is covered in the 

Data Cleansing section of this guide.
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Learn more about Intake and how to get started.

Finding and accessing the right data sets to answer research 

questions can be extremely time-consuming tasks without a 

well-documented, curated data catalog. To make data discovery 

and extraction more efficient, data engineers should commit to 

the development of a thorough data ingest and cataloging 

pipeline and work with IT to ensure data scientists can access 

data using instructions in the catalog. This labor-intensive prep 

work will be well worth the time, enabling data scientists to 

quickly search for and access the data sets they need without 

involving IT, or worse loading the data only to discover it isn’t 

right for their model. Furthermore, catalogs, when kept up to 

date, will ensure that data scientists always get the latest version 

of datasets, and perhaps choose between sections of data 

meant for different uses.

The data catalog should include searchable metadata (type of 

data, free word text, tags, provenance, etc.) with descriptions of 

data sets that data scientists would find useful.  Each catalog 

entry should be a definition of how to read a dataset, including 

the type of data, the loader and arguments required, and the 

Data discovery and extraction

location of files and credentials required to fetch the data. 

Anaconda recommends using Intake to create data catalogs 

that empower data scientists to search and load data for their 

projects easily from Python. Intake allows data scientists to 

search for data sets in a hierarchical tree, which is more 

efficient than going through lists of files. 

Intake also allows data engineers to provide descriptions of 

how to load data so data scientists can access data sets 

without having to figure it out on their own or wait for help 

from IT. Lastly, Intake allows for the separation of the definition 

of data sources from their use and analysis. This means data 

engineers can decide and execute on where data should be 

stored, in what format, and in what type of package without 

affecting data scientists’ work. The data scientist can then fetch 

the data in a familiar container (dataframe, data, etc.) that they 

know how to analyze.
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Once you can access the data, the next step is to conduct an 

exploratory data analysis (EDA) to gain a better understanding of 

trends and important characteristics. An EDA allows data 

scientists to uncover patterns and irregularities in data and to 

understand frequency counts, variance, and correlations.

For columnar data, the go-to exploration tool is pandas, where 

you can explore descriptive statistics, summarize unique values 

and missing values, and more. Here we’ll provide some 

additional open-source analysis and visualization tools data 

scientists can use to explore and understand data sets.

Data exploration and profiling

Fast data profiling

pandas_profiling is a Python tool that generates interactive 

reports from pandas data frames, allowing for quick data 

profiling with just a few lines of code. pandas_profiling reports 

include: 

• More powerful type inference than what Pandas offers

• Essentials such as unique and missing values

• Descriptive stats (mean, mode, standard deviation, quantiles, 

histograms)

• Most common values

• Correlations

• Missing values matrix, heatmaps, and dendrograms

• Text analysis

• File and image analysis

Learn more about pandas_profiling.
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Data visualization

Blindly running averages or other statistics on your data can easily 

lead to incorrect conclusions if there are outliers or trends you did 

not expect. If you can present your data visually, our brains are 

highly skilled at spotting patterns and inconsistencies. Thus it is 

crucial to explore the underlying data visually before drawing 

conclusions or taking actions. Scatter plots, cluster size analysis,  

and correlation heat maps can be especially helpful in providing 

insights when exploring new datasets. 

Data exploration is an art, and there is no one perfect way to 

visualize any data set. There are dozens of “viz” libraries available for 

Python but here we’ll focus on three that are particularly focused on 

helping you understand the properties of a new dataset: Seaborn, 

Datashader, and Holoviz. 

Efficient data preparation with Python

Visit PyViz.org for a complete list of Python 

visualization libraries.
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http://PyViz.org


Paired density and 
scatterplot matrix

Scatterplot with 
categorical variables

Discovering structure in 
heatmap data

Seaborn is a library built on top of Matplotlib that provides a large variety of visualization tools for data exploration, focusing on statistical 

visualizations. It is closely integrated with pandas and provides a dataset-oriented API for examining relationships between multiple 

variables. Here are a few examples of using visualization to explore data sets with Seaborn: 

Seaborn
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Datashader was created to make it easier to interactively visualize large, multidimensional datasets, with a goal of accurately rendering both 

the trends and outliers in the data fast enough to be practical for interactive exploration. As illustrated in the figure below, plotting even 1% 

of a dataset with 300 million points of US Census locations in a standard plotting program (Matplotlib in this case) takes 5 seconds, which is 

too slow for interactive panning and zooming. Standard plotting tools also require adjusting multiple parameters before they will reveal the 

data, which is difficult if you don’t already know the properties of your dataset! Datashader uses server-side aggregation techniques to 

accurately reveal the shape of the entire distribution without needing a parameter exploration, in under 0.1 seconds for the entire dataset.

Datashader for painlessly exploring large datasets

Plotting 1% of the data with Matplotlib takes 5 
seconds and shows only limited information

Patterns can be revealed by adjusting Matplotlib 
parameters, if you know what to expect

Datashader renders all 300 million points in 0.1 
second with no parameter tuning needed

HoloViz is an Anaconda project that provides tools for high-level and large-data visualization built on top of Matplotlib, Bokeh, and Plotly. 

HoloViz includes hvPlot for easy one-line plotting from Pandas, Xarray, or Dask to encourage you to visualize every step of your 

processing pipeline, plus Datashader so that you can render all your data without making any assumptions about its content, and Panel 

for creating web applications for interactive exploration in Jupyter that can later be deployed for sharing with stakeholders. hvPlot works 

similarly to Seaborn or the default plotting for Pandas, but provides interactive visualizations that support easy exploration.

Datashader

Holoviz
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Data cleansing

Data cleansing or cleaning may be the most plodding 

task for some data scientists, but it is essential for 

accurate models and analyses. Data cleansing involves 

finding and remediating missing, duplicated, irregular, 

unnecessary and inconsistent data. Some of this dirty 

data will likely already have been identified in the data 

exploration phase. 

One way to make the data cleansing process more 

efficient is to maintain a library of functions or a 

repository of rules that data scientists can refer to 

when cleaning data sets. 

There are several ways to clean data using Python and 

common open-source libraries such as pandas and 

NumPy and common visualization tools such as 

Matplotlib, Seaborn, and HoloViz. 
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Missing Values Heatmap Created with Seaborn

Alternatively, one can quickly gain an understanding of what 

data is missing by using Python to create a list of the 

percentage of missing data for each column:

# % of missing

for col in df.columns:

    pct_missing = np.mean(df[col].isnull()) 

    print('{} - {}%'.format(col, round(pct_missing*100)))

Locating missing data

One way to facilitate the search for missing data is to create  

a heatmap that shows missing fields in a contrasting color.  

By looking at a data set this way, a data scientist can quickly 

discover which features need attention and exclude them 

altogether if they are not important to the project at hand. 

Data scientists can use Seaborn and other data visualization 

tools to quickly create heatmaps with contrasting colors to 

find missing values or histograms to discover the frequency 

of missing values. 
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When exploring a data set, it’s important to identify outliers and determine if 

they are in fact outliers or mistakes in data collection. Histograms can also be 

used to find outliers, as well as bar charts and descriptive statistics. To see a 

quick description of a data set, input the following:

This will provide total count, mean, quartiles, and max value, among other 

characteristics, enabling a quick glance at the distribution between minimum 

and maximum values.

Visualization tools are also great for identifying outliers, especially scatter plots, 

clustering, and violin plots. Use Seaborn or HoloViz tools to easily create these 

visualizations to view data distributions and identify outliers. 

Finding outliers

df[‘feature_name’].describe() Violin Plot Showing Distributions,  
Created with HoloViz

# sorting by first name

data.sort_values("First Name", 

inplace=True)

  

# dropping duplicate values

data.drop_

duplicates(keep=False,inplace=True)

In addition to removing any features that 

are unrelated to answer the research 

questions at hand, duplicates must be 

removed so that they do not bias the 

results. Sorting to help identify and then 

removing duplicates is easy with Python 

and pandas. Here is an example of sorting 

by first name (useful if inspecting the data 

manually) and dropping duplicates: 

Identifying duplicates
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from nltk.metrics import edit_distance

df_city_ex = pd.DataFrame(data={'city': ['tokyo', 'tokoyo', 

'tokiyo', 'yokohama', 'yokohoma', 'yokahama', 'osaka', 'kobe']})

df_city_ex['city_distance_tokyo'] = df_city_ex['city'].
map(lambda x: edit_distance(x, 'tokyo'))

df_city_ex['city_distance_yokohama'] = df_city_ex['city'].
map(lambda x: edit_distance(x, 'yokohama'))

Df_city_ex

# make everything lower case.

df['sub_area_lower'] = df['sub_area'].str.lower()

df['sub_area_lower'].value_counts(dropna=False)

Common inconsistencies in data sets include capitalization,  

data formats, and misspelled words. There are a few simple 

operations in Python for remediating these common 

inconsistencies. To avoid confusion from variations in 

capitalization, it’s often easiest to make all data lowercase:

To identify and remediate misspelled words, use fuzzy logic.  

To start, search for a few common entries and variations within  

a category. This example uses cities.

Identifying inconsistencies This gives us a list of distances (or how many letters are off) from 

the correct spelling of Tokyo and Yokohama. You will find that 

misspelled words are typically only a distance of 1 or 2 from the 

correct word. Greater distances likely indicate a different city.  

To remediate misspelled words in this category, we can focus  

on those with a distance of two or less from the correct spelling.

To remediate this:

Obviously, great care must be taken to preserve names which are 

genuinely different but happen to be similar as separate identifiers.

Another common formatting problem is making address entries 

uniform. Address entries often contain a combination of spacing, 

punctuation, and capitalization inconsistencies. To remediate this, 

we can use a combination of functions to make all values lower 

case and standardize punctuation.

See detailed examples of how to use Python to remove duplicates, 

find and correct misspelled words, make capitalization and 

punctuation uniform, find inconsistencies, make address formatting 

uniform and more in this detailed data cleaning guide published on 

Towards Data Science. 

msk = df_city_ex['city_distance_tokyo'] <= 2

df_city_ex.loc[msk, 'city'] = 'tokyo'

msk = df_city_ex['city_distance_yokohama'] <= 2

df_city_ex.loc[msk, 'city'] = 'yokohama'

df_city_ex
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Data and time format is also often inconsistent. We can use Python to standardize date and 

time formats, to convert string to date and vice versa, compare and change time zones, and 

calculate time differences. Here are some useful Python directives to get started:

Date and time formatting

DIRECTIVE MEANING EXAMPLE

%a Weekday as abbreviated name Sun, Mon, Tue...

%A Weekday as full name Sunday, Monday...

%w Weekday as a decimal number; 0 is Sunday, 6 is Saturday 0, 1, 2...

%d Day of month as a zero-padded decimal number 01, 02, 03...

%b Month as abbreviated name Jan, Feb, Mar...

%B Month as full name January, February...

%m Month as zero-padded decimal number 01, 02, 03...

%y Year without century as zero-padded decimal number 98, 99, 00, 01...

%Y Year with century as a decimal number 1998, 1999, 2000...

Source: Towards Data Science. To learn more about how to use these directives read  

How to Manipulate Date and Time in Python like a Boss. 
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Data transformation

Data transformation is the process of modifying or converting data format or structure.  

This can include aggregating columns or categories, converting units, converting times and dates. 

There are a variety of Python packages available to assist with units conversions. Here are a few of them to note: 

• Arrow - a library that simplifies date/time conversion and formatting

• QuantiPhy - a library for converting physical quantities; supports SI scale factors

• Astropy - a library for astronomy that includes comprehensive units/dimensionality handling 

• Pint - a Python package to define, operate and manipulate physical quantities

• SymPy - a module that allows for symbolic manipulation of variables, which can represent quantities with units

 

There are many other Python packages out there to assist with domain-specific conversions. 
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https://arrow.readthedocs.io/en/stable/
https://quantiphy.readthedocs.io/en/stable/
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Airflow

One way to do this in the open-source world is with Apache Airflow. 

Airflow is a Python-based data workflow management system 

originally developed by Airbnb’s data team to help speed up their 

data pipelines. It can be used to schedule tasks to aggregate, 

cleanse, and organize data, among other tasks unrelated to data 

preparation.

 

 

Celery

Celery is a workflow automation tool that was developed with 

Python, but with a protocol that can be implemented in any 

language. Celery uses task queues to distribute work across 

machines or threads and allows for high availability and horizontal 

scaling. Celery can process millions of tasks per minute and can run 

on single machines or multiple. A Celery system can even run across 

data centers.

Luigi

Luigi is a Python workflow management tool originally developed at 

Spotify. Luigi is great for managing long-running batch processes, and it’s 

easy to build long-running pipelines that take days or weeks to complete. 

Luigi’s interface is less user-friendly than Airflow’s, but it allows for custom 

scheduling and has a comprehensive library of stock tasks and target data 

systems.

Prefect

Prefect is a workflow management platform that allows users to automate 

anything they can do with Python. Designed and built with Dask in mind, 

Prefect schedules workflows while allowing Dask to schedule and manage 

the resources for tasks within workflows. Prefect generally allows for more 

flexibility and more dynamic workflows than Airflow or Luigi. For example, 

Airflow’s scheduler is critical to the execution of multiple stages in a 

workflow, while Prefect decouples this logic into separate processes. 

Airflow’s design makes it better for managing larger tasks while Prefect is 

better for smaller, modular tasks.

Automating data prep workflows

Particularly for data that is updated frequently, data engineers and data scientists can speed up the data preparation process by 

automating some of their workflows. Data professionals can accelerate the data preparation process with these Python-based tools.

Learn more about Luigi.Learn more about Airflow.

Learn more about Celery.

Learn more about Prefect.
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Tools are no substitute 
for human intuition
While there are tools that make the data preparation process 

more efficient, and automation tools will become more 

sophisticated over time, it’s not easy to use them to apply a 

critical lens to data. Human experience and intuition are 

necessary and will continue to be necessary to evaluate data sets 

and determine if outliers and inconsistencies are errors or simply 

unusual given the context. Human intuition is also needed to 

determine whether a data set can contribute valuable insight to 

solve specific problems or provide relevant answers to the 

research questions at hand. Machines will not take over the task 

of data preparation any time soon.
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About Anaconda

With more than 20 million users, Anaconda is the world’s most popular data science 

platform and the foundation of modern machine learning. We pioneered the use of 

Python for data science, champion its vibrant community, and continue to steward 

open-source projects that make tomorrow’s innovations possible. Our enterprise-grade 

solutions enable corporate, research, and academic institutions around the world to 

harness the power of open-source for competitive advantage, groundbreaking research, 

and a better world. 

Visit https://www.anaconda.com to learn more.

© 2020 Anaconda, Inc.
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