
Efficient data
preparation
with Python

What’s Inside

3 Introduction

5 Data anonymization

6 Data discovery and extraction

7 Data exploration and profiling

8 Data visualization

11 Data cleansing

16 Data transformation

17 Automating data prep workflows

18 Tools are no substitute for human intuition

Efficient data preparation with Python 2

Although data scientists spend less time now than they did a few years ago on

data preparation, our 2020 State of Data Science survey found that nearly half

of their time (45%) is still spent preparing for analysis and modeling.

Data discovery and data preparation have always been among the most

time-intensive steps of a research project and for good reason: If there are

unaddressed errors in data, or if the wrong version of data is used, there will be

errors in the resulting analysis or model. In some cases these errors could

render the analysis or model completely useless. This is why thorough data

preparation is essential for accurate analyses and accurate models.

Introduction

3Efficient data preparation with Python 3

https://www.anaconda.com/state-of-data-science-2020

Data preparation will likely always be a major step in the data

science process. However, data scientists can speed up the

time spent on data prep tasks with a well-documented and

curated data catalog, a repository of data cleaning functions,

and of course, Python tools and libraries created especially for

more efficient data prep.

What does data preparation include?

Data preparation is a general term that includes multiple steps

that might be needed to prepare data for analysis or machine

learning and model development. Data preparation will usually

include anonymization, data discovery and exploration, data

cleansing, and what some refer to as ETL — extracting,

transforming and loading.

Let’s take a look at some tools and tips to make each of these steps more efficient.

Efficient data preparation with Python 4

Data must be managed ethically and securely throughout the

data science process. When working with data that involves

personally identifiable information (PII) or other sensitive data,

the first step in the data preparation process must be to

anonymize the data. One way to do this is to replace real

personal data with similar but fake information. An open-source

Python tool that helps with this process is Faker. Faker’s library

contains a comprehensive set of data generators for data needed

in a variety of domains.

Learn more about Faker and how to install it.

Data anonymization

Scrubadub is another Python tool that can be used to efficiently

scrub PII from free text, including names, email addresses,

phone numbers, social security numbers, usernames, and more.

Read more about Scrubadub and how to easily install

this tool.

To maintain the integrity and usefulness of the data after

anonymization, the fake data must preserve the structure and

semantics of the original data. Consider the relationships that

originally existed between fields. For example, how do people’s

names and employer names relate to the structure of their email

addresses? If this is important for the analysis or model, create a

mapping of real domains to fake domains. Deduplication should

also be performed after anonymization. This is covered in the

Data Cleansing section of this guide.

Efficient data preparation with Python 5

https://faker.readthedocs.io/en/master/
https://scrubadub.readthedocs.io/en/stable/

Learn more about Intake and how to get started.

Finding and accessing the right data sets to answer research

questions can be extremely time-consuming tasks without a

well-documented, curated data catalog. To make data discovery

and extraction more efficient, data engineers should commit to

the development of a thorough data ingest and cataloging

pipeline and work with IT to ensure data scientists can access

data using instructions in the catalog. This labor-intensive prep

work will be well worth the time, enabling data scientists to

quickly search for and access the data sets they need without

involving IT, or worse loading the data only to discover it isn’t

right for their model. Furthermore, catalogs, when kept up to

date, will ensure that data scientists always get the latest version

of datasets, and perhaps choose between sections of data

meant for different uses.

The data catalog should include searchable metadata (type of

data, free word text, tags, provenance, etc.) with descriptions of

data sets that data scientists would find useful. Each catalog

entry should be a definition of how to read a dataset, including

the type of data, the loader and arguments required, and the

Data discovery and extraction

location of files and credentials required to fetch the data.

Anaconda recommends using Intake to create data catalogs

that empower data scientists to search and load data for their

projects easily from Python. Intake allows data scientists to

search for data sets in a hierarchical tree, which is more

efficient than going through lists of files.

Intake also allows data engineers to provide descriptions of

how to load data so data scientists can access data sets

without having to figure it out on their own or wait for help

from IT. Lastly, Intake allows for the separation of the definition

of data sources from their use and analysis. This means data

engineers can decide and execute on where data should be

stored, in what format, and in what type of package without

affecting data scientists’ work. The data scientist can then fetch

the data in a familiar container (dataframe, data, etc.) that they

know how to analyze.

Efficient data preparation with Python 6

https://intake.readthedocs.io/en/latest/index.html

Once you can access the data, the next step is to conduct an

exploratory data analysis (EDA) to gain a better understanding of

trends and important characteristics. An EDA allows data

scientists to uncover patterns and irregularities in data and to

understand frequency counts, variance, and correlations.

For columnar data, the go-to exploration tool is pandas, where

you can explore descriptive statistics, summarize unique values

and missing values, and more. Here we’ll provide some

additional open-source analysis and visualization tools data

scientists can use to explore and understand data sets.

Data exploration and profiling

Fast data profiling

pandas_profiling is a Python tool that generates interactive

reports from pandas data frames, allowing for quick data

profiling with just a few lines of code. pandas_profiling reports

include:

• More powerful type inference than what Pandas offers

• Essentials such as unique and missing values

• Descriptive stats (mean, mode, standard deviation, quantiles,

histograms)

• Most common values

• Correlations

• Missing values matrix, heatmaps, and dendrograms

• Text analysis

• File and image analysis

Learn more about pandas_profiling.

Efficient data preparation with Python 7

https://github.com/pandas-profiling/pandas-profiling

Data visualization

Blindly running averages or other statistics on your data can easily

lead to incorrect conclusions if there are outliers or trends you did

not expect. If you can present your data visually, our brains are

highly skilled at spotting patterns and inconsistencies. Thus it is

crucial to explore the underlying data visually before drawing

conclusions or taking actions. Scatter plots, cluster size analysis,

and correlation heat maps can be especially helpful in providing

insights when exploring new datasets.

Data exploration is an art, and there is no one perfect way to

visualize any data set. There are dozens of “viz” libraries available for

Python but here we’ll focus on three that are particularly focused on

helping you understand the properties of a new dataset: Seaborn,

Datashader, and Holoviz.

Efficient data preparation with Python

Visit PyViz.org for a complete list of Python

visualization libraries.

Efficient data preparation with Python 8

http://PyViz.org

Paired density and
scatterplot matrix

Scatterplot with
categorical variables

Discovering structure in
heatmap data

Seaborn is a library built on top of Matplotlib that provides a large variety of visualization tools for data exploration, focusing on statistical

visualizations. It is closely integrated with pandas and provides a dataset-oriented API for examining relationships between multiple

variables. Here are a few examples of using visualization to explore data sets with Seaborn:

Seaborn

Efficient data preparation with Python 9

https://seaborn.pydata.org/examples/pair_grid_with_kde.html
https://seaborn.pydata.org/examples/scatterplot_categorical.html
https://seaborn.pydata.org/examples/structured_heatmap.html
https://seaborn.pydata.org/introduction.html
https://seaborn.pydata.org/introduction.html

Datashader was created to make it easier to interactively visualize large, multidimensional datasets, with a goal of accurately rendering both

the trends and outliers in the data fast enough to be practical for interactive exploration. As illustrated in the figure below, plotting even 1%

of a dataset with 300 million points of US Census locations in a standard plotting program (Matplotlib in this case) takes 5 seconds, which is

too slow for interactive panning and zooming. Standard plotting tools also require adjusting multiple parameters before they will reveal the

data, which is difficult if you don’t already know the properties of your dataset! Datashader uses server-side aggregation techniques to

accurately reveal the shape of the entire distribution without needing a parameter exploration, in under 0.1 seconds for the entire dataset.

Datashader for painlessly exploring large datasets

Plotting 1% of the data with Matplotlib takes 5
seconds and shows only limited information

Patterns can be revealed by adjusting Matplotlib
parameters, if you know what to expect

Datashader renders all 300 million points in 0.1
second with no parameter tuning needed

HoloViz is an Anaconda project that provides tools for high-level and large-data visualization built on top of Matplotlib, Bokeh, and Plotly.

HoloViz includes hvPlot for easy one-line plotting from Pandas, Xarray, or Dask to encourage you to visualize every step of your

processing pipeline, plus Datashader so that you can render all your data without making any assumptions about its content, and Panel

for creating web applications for interactive exploration in Jupyter that can later be deployed for sharing with stakeholders. hvPlot works

similarly to Seaborn or the default plotting for Pandas, but provides interactive visualizations that support easy exploration.

Datashader

Holoviz

Efficient data preparation with Python 10

https://datashader.org/
https://examples.pyviz.org/census
https://examples.pyviz.org/census
https://examples.pyviz.org/census
https://holoviz.org/
https://holoviz.org/
https://hvplot.holoviz.org/
https://datashader.org/
https://panel.holoviz.org/

Data cleansing

Data cleansing or cleaning may be the most plodding

task for some data scientists, but it is essential for

accurate models and analyses. Data cleansing involves

finding and remediating missing, duplicated, irregular,

unnecessary and inconsistent data. Some of this dirty

data will likely already have been identified in the data

exploration phase.

One way to make the data cleansing process more

efficient is to maintain a library of functions or a

repository of rules that data scientists can refer to

when cleaning data sets.

There are several ways to clean data using Python and

common open-source libraries such as pandas and

NumPy and common visualization tools such as

Matplotlib, Seaborn, and HoloViz.

Efficient data preparation with Python 11

Missing Values Heatmap Created with Seaborn

Alternatively, one can quickly gain an understanding of what

data is missing by using Python to create a list of the

percentage of missing data for each column:

% of missing

for col in df.columns:

 pct_missing = np.mean(df[col].isnull())

 print('{} - {}%'.format(col, round(pct_missing*100)))

Locating missing data

One way to facilitate the search for missing data is to create

a heatmap that shows missing fields in a contrasting color.

By looking at a data set this way, a data scientist can quickly

discover which features need attention and exclude them

altogether if they are not important to the project at hand.

Data scientists can use Seaborn and other data visualization

tools to quickly create heatmaps with contrasting colors to

find missing values or histograms to discover the frequency

of missing values.

Efficient data preparation with Python 12

https://seaborn.pydata.org/generated/seaborn.heatmap.html

When exploring a data set, it’s important to identify outliers and determine if

they are in fact outliers or mistakes in data collection. Histograms can also be

used to find outliers, as well as bar charts and descriptive statistics. To see a

quick description of a data set, input the following:

This will provide total count, mean, quartiles, and max value, among other

characteristics, enabling a quick glance at the distribution between minimum

and maximum values.

Visualization tools are also great for identifying outliers, especially scatter plots,

clustering, and violin plots. Use Seaborn or HoloViz tools to easily create these

visualizations to view data distributions and identify outliers.

Finding outliers

df[‘feature_name’].describe() Violin Plot Showing Distributions,
Created with HoloViz

sorting by first name

data.sort_values("First Name",

inplace=True)

dropping duplicate values

data.drop_

duplicates(keep=False,inplace=True)

In addition to removing any features that

are unrelated to answer the research

questions at hand, duplicates must be

removed so that they do not bias the

results. Sorting to help identify and then

removing duplicates is easy with Python

and pandas. Here is an example of sorting

by first name (useful if inspecting the data

manually) and dropping duplicates:

Identifying duplicates

Efficient data preparation with Python 13

https://hvplot.holoviz.org/reference/pandas/violin.html

from nltk.metrics import edit_distance

df_city_ex = pd.DataFrame(data={'city': ['tokyo', 'tokoyo',

'tokiyo', 'yokohama', 'yokohoma', 'yokahama', 'osaka', 'kobe']})

df_city_ex['city_distance_tokyo'] = df_city_ex['city'].
map(lambda x: edit_distance(x, 'tokyo'))

df_city_ex['city_distance_yokohama'] = df_city_ex['city'].
map(lambda x: edit_distance(x, 'yokohama'))

Df_city_ex

make everything lower case.

df['sub_area_lower'] = df['sub_area'].str.lower()

df['sub_area_lower'].value_counts(dropna=False)

Common inconsistencies in data sets include capitalization,

data formats, and misspelled words. There are a few simple

operations in Python for remediating these common

inconsistencies. To avoid confusion from variations in

capitalization, it’s often easiest to make all data lowercase:

To identify and remediate misspelled words, use fuzzy logic.

To start, search for a few common entries and variations within

a category. This example uses cities.

Identifying inconsistencies This gives us a list of distances (or how many letters are off) from

the correct spelling of Tokyo and Yokohama. You will find that

misspelled words are typically only a distance of 1 or 2 from the

correct word. Greater distances likely indicate a different city.

To remediate misspelled words in this category, we can focus

on those with a distance of two or less from the correct spelling.

To remediate this:

Obviously, great care must be taken to preserve names which are

genuinely different but happen to be similar as separate identifiers.

Another common formatting problem is making address entries

uniform. Address entries often contain a combination of spacing,

punctuation, and capitalization inconsistencies. To remediate this,

we can use a combination of functions to make all values lower

case and standardize punctuation.

See detailed examples of how to use Python to remove duplicates,

find and correct misspelled words, make capitalization and

punctuation uniform, find inconsistencies, make address formatting

uniform and more in this detailed data cleaning guide published on

Towards Data Science.

msk = df_city_ex['city_distance_tokyo'] <= 2

df_city_ex.loc[msk, 'city'] = 'tokyo'

msk = df_city_ex['city_distance_yokohama'] <= 2

df_city_ex.loc[msk, 'city'] = 'yokohama'

df_city_ex

Efficient data preparation with Python 14

https://towardsdatascience.com/data-cleaning-in-python-the-ultimate-guide-2020-c63b88bf0a0d

Data and time format is also often inconsistent. We can use Python to standardize date and

time formats, to convert string to date and vice versa, compare and change time zones, and

calculate time differences. Here are some useful Python directives to get started:

Date and time formatting

DIRECTIVE MEANING EXAMPLE

%a Weekday as abbreviated name Sun, Mon, Tue...

%A Weekday as full name Sunday, Monday...

%w Weekday as a decimal number; 0 is Sunday, 6 is Saturday 0, 1, 2...

%d Day of month as a zero-padded decimal number 01, 02, 03...

%b Month as abbreviated name Jan, Feb, Mar...

%B Month as full name January, February...

%m Month as zero-padded decimal number 01, 02, 03...

%y Year without century as zero-padded decimal number 98, 99, 00, 01...

%Y Year with century as a decimal number 1998, 1999, 2000...

Source: Towards Data Science. To learn more about how to use these directives read

How to Manipulate Date and Time in Python like a Boss.

Efficient data preparation with Python 15

https://towardsdatascience.com/how-to-manipulate-date-and-time-in-python-like-a-boss-ddea677c6a4d

Data transformation

Data transformation is the process of modifying or converting data format or structure.

This can include aggregating columns or categories, converting units, converting times and dates.

There are a variety of Python packages available to assist with units conversions. Here are a few of them to note:

• Arrow - a library that simplifies date/time conversion and formatting

• QuantiPhy - a library for converting physical quantities; supports SI scale factors

• Astropy - a library for astronomy that includes comprehensive units/dimensionality handling

• Pint - a Python package to define, operate and manipulate physical quantities

• SymPy - a module that allows for symbolic manipulation of variables, which can represent quantities with units

There are many other Python packages out there to assist with domain-specific conversions.

Efficient data preparation with Python 16

https://arrow.readthedocs.io/en/stable/
https://quantiphy.readthedocs.io/en/stable/
https://docs.astropy.org/en/stable/units/
https://pint.readthedocs.io/en/stable/
https://docs.sympy.org/latest/modules/physics/units/index.html

Airflow

One way to do this in the open-source world is with Apache Airflow.

Airflow is a Python-based data workflow management system

originally developed by Airbnb’s data team to help speed up their

data pipelines. It can be used to schedule tasks to aggregate,

cleanse, and organize data, among other tasks unrelated to data

preparation.

Celery

Celery is a workflow automation tool that was developed with

Python, but with a protocol that can be implemented in any

language. Celery uses task queues to distribute work across

machines or threads and allows for high availability and horizontal

scaling. Celery can process millions of tasks per minute and can run

on single machines or multiple. A Celery system can even run across

data centers.

Luigi

Luigi is a Python workflow management tool originally developed at

Spotify. Luigi is great for managing long-running batch processes, and it’s

easy to build long-running pipelines that take days or weeks to complete.

Luigi’s interface is less user-friendly than Airflow’s, but it allows for custom

scheduling and has a comprehensive library of stock tasks and target data

systems.

Prefect

Prefect is a workflow management platform that allows users to automate

anything they can do with Python. Designed and built with Dask in mind,

Prefect schedules workflows while allowing Dask to schedule and manage

the resources for tasks within workflows. Prefect generally allows for more

flexibility and more dynamic workflows than Airflow or Luigi. For example,

Airflow’s scheduler is critical to the execution of multiple stages in a

workflow, while Prefect decouples this logic into separate processes.

Airflow’s design makes it better for managing larger tasks while Prefect is

better for smaller, modular tasks.

Automating data prep workflows

Particularly for data that is updated frequently, data engineers and data scientists can speed up the data preparation process by

automating some of their workflows. Data professionals can accelerate the data preparation process with these Python-based tools.

Learn more about Luigi.Learn more about Airflow.

Learn more about Celery.

Learn more about Prefect.

Efficient data preparation with Python 17

https://dask.org/
https://luigi.readthedocs.io/en/stable/
https://airflow.apache.org/
https://docs.celeryproject.org/en/stable/index.html
https://docs.prefect.io/

Tools are no substitute
for human intuition
While there are tools that make the data preparation process

more efficient, and automation tools will become more

sophisticated over time, it’s not easy to use them to apply a

critical lens to data. Human experience and intuition are

necessary and will continue to be necessary to evaluate data sets

and determine if outliers and inconsistencies are errors or simply

unusual given the context. Human intuition is also needed to

determine whether a data set can contribute valuable insight to

solve specific problems or provide relevant answers to the

research questions at hand. Machines will not take over the task

of data preparation any time soon.

Efficient data preparation with PythonEfficient data preparation with Python 18

About Anaconda

With more than 20 million users, Anaconda is the world’s most popular data science

platform and the foundation of modern machine learning. We pioneered the use of

Python for data science, champion its vibrant community, and continue to steward

open-source projects that make tomorrow’s innovations possible. Our enterprise-grade

solutions enable corporate, research, and academic institutions around the world to

harness the power of open-source for competitive advantage, groundbreaking research,

and a better world.

Visit https://www.anaconda.com to learn more.

© 2020 Anaconda, Inc.

https://www.anaconda.com

	Introduction
	Data anonymization
	Data discovery and extraction
	Data exploration and profiling
	Data visualization
	Data cleansing
	Data transformation
	Automating data prep workflows
	Tools are no substitute for human intuition

